Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
Arch Environ Contam Toxicol ; 86(2): 112-124, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38265449

ABSTRACT

Predation presents specific behavioral characteristics for each species, and the interaction between prey and predator influences the structuring of the food web. Concerning insects, predation can be affected in different ways, such as exposure to chemical stressors, e.g., pesticides. Therefore, analyses were carried out of the effects of exposure to insecticide fipronil and the herbicide 2,4-D on predation, parameters of food selectivity, and the swimming behavior of two neotropical predatory aquatic insects of the families Belostomatidae (giant water bugs) and larvae of Libellulidae (dragonfly). These predatory insects were exposed for 24 h to a commercial formulation of the chlorophenoxy herbicide, 2,4-D at nominal concentrations of 200, 300, 700, and 1400 µg L-1, and to a commercial formulation of the phenylpyrazole insecticide, fipronil at nominal concentrations of 10, 70, 140, and 250 µg L-1. In a control treatment, the insects were placed in clean, unspiked water. At the end of the exposure, the maximum swimming speed of the predators was evaluated. Afterward, the predators were placed in clean water in a shared environment for 24 h with several prey species, including the cladoceran Ceriodaphnia silvestrii, larvae of the insect Chironomus sancticaroli, the amphipod Hyalella meinerti, the ostracod Strandesia trispinosa, and the oligochaete Allonais inaequalis for 24 h. After this period, the consumed prey was counted. The results reveal that predators from both families changed prey consumption compared with organisms from the control treatment, marked by a decrease after exposure to fipronil and an increase in consumption caused by 2,4-D. In addition, there were changes in the food preferences of both predators, especially when exposed to the insecticide. Exposure to fipronil decreased the swimming speed of Belostomatidae individuals, possibly due to its neurotoxic effect. Exposure to the insecticide and the herbicide altered prey intake by predators, which could negatively influence the complex prey-predator relationship and the functioning of aquatic ecosystems in contaminated areas.


Subject(s)
Herbicides , Insecticides , Odonata , Pesticides , Humans , Animals , Insecticides/toxicity , Food Chain , Ecosystem , Invertebrates , Insecta , Larva , Herbicides/toxicity , 2,4-Dichlorophenoxyacetic Acid/toxicity , Predatory Behavior
2.
Harmful Algae ; 129: 102513, 2023 11.
Article in English | MEDLINE | ID: mdl-37951608

ABSTRACT

Freshwater ecosystems are highly susceptible to harmful algal blooms (HABs), which are often caused by monospecific dense blooms. Effective preventive management strategies are urgently needed to avoid wide-ranging and severe impacts often resulting in costly damage to resources and unsustainable management options. In this study, we utilized SDM techniques focused on Prymnesium parvum, one of the most notorious HABs species worldwide. We first compare the climatic space occupied by P. parvum in North America, Europe and Australia. Additionally, we use MaxEnt algorithm to infer, for the first time, the potentially suitable freshwater environments in the aforementioned ranges. We also discuss the risks of invasion in reservoirs - prone habitats to persistent blooms of pests and invasive phytoplanktonic species. Our results show populations with distinctive niches suggesting ecophysiological tolerances, perhaps reflecting different strains. Our model projections revealed that the potential extent for P. parvum invasions is much broader than its current geographic distribution. The spatial configuration of reservoirs, if not sustaining dense blooms due to non-optimal conditions, favors colonization of multiple basins and ecoregions not yet occupied by P. parvum. Our models can provide valuable insights to decision-makers and monitoring programs while reducing the resources required to control the spread of P. parvum in disturbed habitats. Lastly, as impact magnitude is influenced by toxicity which in turn varies between different strains, we suggest future studies to incorporate intraspecific genetic information and fine-scale environmental variables to estimate potential distribution of P. parvum.


Subject(s)
Haptophyta , Haptophyta/genetics , Ecosystem , Harmful Algal Bloom/physiology , North America , Fresh Water
3.
Chemosphere ; 345: 140413, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37844699

ABSTRACT

Pollution by metals is a matter of concern around the world. In recent decades, the high population growth in urban centers has significantly magnified the entry of these pollutants into aquatic ecosystems. The Amazon region, intense migratory flow, gold mining, and industrialization have been considered the main driving forces for increasing metal pollution. Thus, the main aim of this study is to conduct, for the first time, an Ecological Risk Assessment (ERA) based on metal concentrations measured in the sediment and water of several aquatic environments from the Amazon basin, based on the risk quotient values (RQ = measured environmental concentration - MEC/predicted no effect concentration - PNEC). In addition, the metal contamination factor (CF) was estimated. Although metal concentrations in water were generally low, these values were far above the limits established by current national legislation in many areas, showing higher concentrations for the metals Co, Pb, Cr, Cu, and Ni. Concentrations of Mn, Cu, Ba, Pb, Co, Ni, Cr, Zn, Cd, and As were especially high in the sediment for several evaluated environments. The ERA for the water compartment revealed that 56% of the studied areas presented high risk (RQ > 1) for aquatic biota. In the sediment, 66% of the sites presented a high risk and 40% medium risk (RQ = 0.1-1). The CF indicated that 49% of the sampling points had high contamination and only 24%, had low contamination. These results reveal that monitoring studies in the Amazon region, provides important information so that public policies for the preservation of water resources can be strengthened in the Amazon.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Ecosystem , Brazil , Lead , Geologic Sediments , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Risk Assessment , Water
4.
Hydrobiologia ; 850(12-13): 2611-2653, 2023.
Article in English | MEDLINE | ID: mdl-37323646

ABSTRACT

In this review we highlight the relevance of biodiversity that inhabit coastal lagoons, emphasizing how species functions foster processes and services associated with this ecosystem. We identified 26 ecosystem services underpinned by ecological functions performed by bacteria and other microbial organisms, zooplankton, polychaetae worms, mollusks, macro-crustaceans, fishes, birds, and aquatic mammals. These groups present high functional redundancy but perform complementary functions that result in distinct ecosystem processes. Because coastal lagoons are located in the interface between freshwater, marine and terrestrial ecosystems, the ecosystem services provided by the biodiversity surpass the lagoon itself and benefit society in a wider spatial and historical context. The species loss in coastal lagoons due to multiple human-driven impacts affects the ecosystem functioning, influencing negatively the provision of all categories of services (i.e., supporting, regulating, provisioning and cultural). Because animals' assemblages have unequal spatial and temporal distribution in coastal lagoons, it is necessary to adopt ecosystem-level management plans to protect habitat heterogeneity and its biodiversity, ensuring the provision of services for human well-being to multi-actors in the coastal zone.

5.
Bull Environ Contam Toxicol ; 110(3): 64, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36920531

ABSTRACT

The ecotoxicity of metals is generally assessed individually, in part because current knowledge does not allow for the accurate prediction of the toxicity of metal mixtures to aquatic organisms. The objective of this study was to investigate the toxic effects of binary combinations of metal salts (copper sulphate-CuSO4, cadmium chloride-CdCl2, mercury chloride-HgCl2 and manganese sulphate-MnSO4) on the tropical ostracod Strandesia trispinosa through acute toxicity tests. To this end, ostracods were exposed to each individual metal salt as well as to their combinations by applying a full factorial design. The model that best explained the effects of the mixtures CuSO4 x CdCl2, CuSO4 x HgCl2 and CuSO4 x MnSO4 on the survival of S. trispinosa was Concentration Addition, whereas this was Independent Action for the CdCl2 x HgCl2 mixture. The observed synergistic interactions are likely to result in unacceptable risks to aquatic ecosystems under real field conditions. This is especially the case if CuSO4 predominates the metal mixture, as observed for its combination with mercury and manganese.


Subject(s)
Cadmium , Mercury , Animals , Ecosystem , Metals , Crustacea , Copper
6.
Water Res ; 222: 118918, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35932706

ABSTRACT

Planktonic invasive species cause adverse effects on aquatic biodiversity and ecosystem services. However, these impacts are often underestimated because of unresolved taxonomic issues and limited biogeographic knowledge. Thus, it is pivotal to start a rigorous quantification of impacts undertaken by planktonic invasive species on global economies. We used the InvaCost database, the most up-to-date database of economic cost estimates of biological invasions worldwide, to produce the first critical assessment of the economic dimension of biological invasions caused by planktonic taxa. We found that in period spanning from 1960 to 2021, the cumulative global cost of plankton invasions was US$ 5.8 billion for permanent plankton (holoplankton) of which viruses encompassed nearly 93%. Apart from viruses, we found more costs related to zooplankton (US$ 297 million) than to the other groups summed, including myco- (US$ 73 million), phyto- (43 million), and bacterioplankton (US$ 0.7 million). Strikingly, harmful and potentially toxic cyanobacteria and dinoflagellates are completely absent from the database. Furthermore, the data base showed a decrease in costs over time, which is probably an artifact as a sharp rise of novel planktonic alien species has gained international attention. Also, assessments of the costs of larval meroplanktonic stages of littoral and benthic invasive invertebrates are lacking whereas cumulative global cost of their adults stages is high up to US$ 98 billion billion and increasing. Considering the challenges and perspectives of increasing but unnoticed or neglected impacts by plankton invasions, the assessment of their ecological and economic impacts should be of high priority.


Subject(s)
Ecosystem , Plankton , Biodiversity , Introduced Species , Water Quality
7.
Hydrobiologia ; 849(17-18): 4015-4027, 2022.
Article in English | MEDLINE | ID: mdl-35342194

ABSTRACT

Non-native species' introductions have increased in the last decades primarily due to anthropogenic causes such as climate change and globalization of trade. Moina macrocopa, a stress-tolerant cladoceran widely used in bioassays and aquaculture, is spreading in temporary and semi-temporary natural ponds outside its natural range. Here, we characterize the variations in the climatic niche of M. macrocopa during its invasions outside the native Palearctic range following introduction into the American continent. Specifically, we examined to what extent the climatic responses of this species have diverged from those characteristics for its native range. We also made predictions for its potential distribution under current and future scenarios. We found that the environmental space occupied by this species in its native and introduced distribution areas shares more characteristics than randomly expected. However, the introduced niche has a high degree of unfilling when displacing its original space towards the extension to drier and hotter conditions. Accordingly, M. macrocopa can invade new areas where it has not yet been recorded in response to warming temperatures and decreasing winter precipitation. In particular, temporary ponds are more vulnerable environments where climatic and environmental stresses may also lower biotic resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s10750-022-04835-7.

8.
Acta sci., Biol. sci ; 43: e56164, 2021. ilus, tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1461009

ABSTRACT

Environmental disturbances and their consequences require constant studies to understand how communities and their ecological relationships respond to these processes. Through analysis of the host-parasite relationships, it is observed that the effect of these disturbances is variable and can change the physiology or behavior of organisms. Black spot disease, caused by endoparasitic helminths, is a pathology observed in natural environments, however, there is not much information about the consequences of this infestation. We separated the specimens from each stream into parasitized and non-parasitized groups, which were subjected to biometric analysis. The biometrics involved cysts count and weight-length measures, which were used to analyze the average relative condition factor. Additionally, we correlate these measures with the parasitic burden of infected individuals. Finally, the parasitized individuals were submitted to histological sections to recognize the parasite. The results demonstrate a low physiological condition in the parasitized group, when compared with non-parasitized groups from the same stream and from different streams. This suggests that pollution, in addition to effects of infestation worsen the fish condition. Besides, the parasite burden was negatively correlated with the condition factor, weight and length measures. We conclude that the parasite burden negatively affects Astyanax paranae individuals´ physiological condition and that trematodes also occur in polluted environments.


Subject(s)
Animals , Biometry , Characidae , Ecology , Rivers/parasitology
9.
Arch Environ Contam Toxicol ; 79(3): 298-309, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32860087

ABSTRACT

Aquatic environments are constantly exposed to a cocktail of contaminants mainly due to human activities. As polluted ecosystems may simultaneously present other multiple natural stressors, the objective of the present study was to evaluate joint effect of stressors (natural and anthropogenic) on life history traits of the Neotropical cladoceran, Ceriodaphnia silvestrii. For this purpose, the effects of water conditioned with predator kairomones (fish) and environmental concentrations (sublethal) of two pesticides widely used in sugarcane monoculture in Brazil, the insecticide Regent® 800 WG (active ingredient-a.i. fipronil) and the herbicide DMA® 806 BR (a.i. 2,4-D) were evaluated using chronic toxicity testing, isolated and in mixture, for this cladoceran species. The environmental risks of pesticides for tropical freshwater biota were also estimated from the risk quotient MEC/PNEC. Among the characteristics of the life history of C. silvestrii evaluated after 8 days of exposure, compared with the mean value of control, the age of primiparous females was not affected by any evaluated treatment. However, species average survival decreased in the treatment of kairomones mixed with fipronil (FK) and in the treatment with a mixture of fipronil, 2,4-D, and kairomones (MFKD). The body length of maternal females was shorter than in the control after exposure in treatments with only kairomones (K) and FK. Fecundity of this cladoceran was reduced when exposed to FK and MFKD treatments, and the intrinsic rate of population increase significantly decreased for organisms exposed to treatment with fipronil (F) and to mixtures of fipronil and 2,4-D (MFD), MFDK, and FK. The results indicated that the combination of anthropogenic and natural stressors causes changes in C. silvestrii life history traits, which can contribute to the decline in populations, and our preliminary risk assessment results are a matter of concern regarding biota conservation.


Subject(s)
2,4-Dichlorophenoxyacetic Acid/toxicity , Cladocera/drug effects , Life History Traits , Pheromones/toxicity , Pyrazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brazil , Ecosystem , Female , Fertility/drug effects , Fishes/metabolism , Fresh Water/chemistry , Toxicity Tests, Chronic
10.
Ecotoxicol Environ Saf ; 201: 110829, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32531577

ABSTRACT

The toxicity of the insecticide carbofuran and herbicide diuron (individually and in mixture) to the invertebrates Paramecium caudatum and Ceriodaphnia silvestrii was evaluated. Acute and chronic toxicity tests were carried out with the diuron and carbofuran active ingredients and their commercial products, Diuron Nortox® 500 SC and Furadan® 350 SC, respectively. Individual toxicity tests showed that C. silvestrii was more sensitive to both carbofuran and diuron than P. caudatum. In single exposures, both pesticides caused adverse effects to C. silvestrii in environmentally relevant concentrations (48 h EC50 = 0.001 mg L-1 and 8 d LOEC = 0.00038 mg L-1 for formulated carbofuran; 8 d LOEC < 0.05 mg L-1 for formulated diuron). For P. caudatum, carbofuran and diuron in single exposures were only slightly toxic (24 h IC50 = 5.1 mg L-1 and 6.9 mg L-1 for formulated carbofuran and diuron, respectively). Acute and chronic exposures to diuron and carbofuran mixtures caused significant deviations of the toxicity predicted by the Concentration Addition and Independent Action reference models for both test species. For the protozoan P. caudatum, a dose-dependent deviation was verified for mortality, with synergism caused mainly by carbofuran and antagonism caused mainly by diuron. For protozoan population growth, however, an antagonistic deviation was observed when the active ingredient mixtures were tested. In the case of C. silvestrii, antagonism at low concentrations and synergism at high concentrations were revealed after acute exposure to active ingredient mixtures, whereas for reproduction an antagonistic deviation was found. Commercial formulation mixtures presented significantly higher toxicity than the active ingredient mixtures. Our results showed that carbofuran and diuron interact and cause different toxic responses than those predicted by the individually tested compounds. Their mixture toxicity should therefore be considered in risk assessments as these pesticides are likely to be present simultaneously in edge-of-field waterbodies.


Subject(s)
Carbofuran/toxicity , Cladocera/drug effects , Cladocera/physiology , Diuron/toxicity , Paramecium caudatum/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Drug Synergism , Toxicity Tests
11.
Ecotoxicology ; 29(9): 1486-1499, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32388636

ABSTRACT

This study evaluated the toxicity of pesticide formulations Kraft® 36 EC (active ingredient-a.i. abamectin) and Score® 250 EC (a.i. difenoconazole), and their mixtures in Daphnia magna at different biological levels of organization. Survival, reproduction and biochemical markers (cholinesterase (ChE), catalase (CAT) and lipid peroxidation (LPO)) were some of the endpoints evaluated. Total proteins and lipids were also studied together with energy consumption (Ec). D. magna neonates were exposed for 96 h to Kraft (2, 4, and 6 ng a.i./L) and Score (12.5, 25, and 50 µg a.i./L) for the biochemical experiments, and for 15 days to abamectin (1-5 ng a.i./L) and to difenoconazole (3.12-50 µg a.i./L) to assess possible changes in reproduction. Exposures of organisms to both single compounds did not cause effects to antioxidant and detoxifying enzymes, except for LPO occurring at the highest concentration of difenoconazole tested. For ChE and CAT there was enzymatic induction in mixture treatments organisms, occurring at minor pesticides concentrations for CAT and at the two highest concentrations for ChE. There were no significant differences for total protein in D. magna but lipids showed an increase at the highest concentrations of pesticide mixture combinations. There was a significant increase of Ec in individuals of all treatments tested. In the chronic test, increased fecundity occurred for D. magna under difenoconazole exposures and mixtures. This study demonstrated that mixtures of these pesticides caused greater toxicity to D. magna than when tested individually, except for Ec. Therefore, effects of mixtures are very hard to predict only based on information from single compounds, which most possibly is the result of biological complexity and redundancy in response pathways, which need further experimentation to become better known.


Subject(s)
Daphnia/physiology , Dioxolanes/toxicity , Ivermectin/analogs & derivatives , Pesticides/toxicity , Triazoles/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cholinesterases , Ivermectin/toxicity , Reproduction , Toxicity Tests, Acute
12.
Pathogens ; 9(2)2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32024031

ABSTRACT

The genus Naegleria, of the free-living amoeba (FLA) group, has been investigated mainly due to its human health impact, resulting in deadly infections and their worldwide distribution on freshwater systems. Naegleria fowleri, colloquially known as the "brain-eating amoeba," is the most studied Naegleria species because it causes primary amoebic meningoencephalitis (PAM) of high lethality. The assessment of FLA biodiversity is fundamental to evaluate the presence of pathogenic species and the possibility of human contamination. However, the knowledge of FLA distribution in Brazil is unknown, and to rectify this situation, we present research on identifying Naegleria spp. in the Monjolinho River as a model study. The river is a public Brazilian freshwater source that crosses the city of São Carlos, in São Paulo state, Brazil. Five distinct sampling sites were examined through limnological features, trophozoites culturing, and PCR against internal transcribed spacer (ITS) regions and 5.8S rRNA sequences. The results identified N. philippinensis, N. canariensisi, N. australiensis, N. gruberi, N. dobsoni sequences, as well as a Hartmannella sequence. The methodology delineated here represents the first Brazilian Naegleria spp. study on a freshwater system. Our results stress the urgency of a large scale evaluation of the presence of free-living amoebas in Brazil.

13.
Ecotoxicol Environ Saf ; 180: 535-541, 2019 Sep 30.
Article in English | MEDLINE | ID: mdl-31128551

ABSTRACT

The relatively low availability of toxicity data for indigenous tropical species has often been discussed. In addition, several taxonomic groups of invertebrates are understudied, such as dragonflies and ostracods. The aim of the present study was therefore to evaluate the acute toxicity of four metals (cadmium - Cd, copper - Cu, manganese - Mn, and mercury - Hg) to the tropical dragonfly nymphs of Tramea cophysa and two tropical ostracod species (Chlamydotheca sp. and Strandesia trispinosa). Toxicity data for other invertebrates were also mined to allow comparing the sensitivity of the three test species with that of other (temperate and tropical) invertebrates. The order of metal sensitivity was different for the three test species: T. cophysa: Cu > CdHg > Mn, Chlamydotheca sp.: Cd > Cu > Hg > Mn, and S. trispinosa: Cd > Hg > Cu > Mn. However, manganese was the least toxic metal tested for all three species, which is hypothesized to be due to a possible metal transfer to the cuticle of the moulting test species. The sensitivity ranking of the three test species to the metals was S. trispinosa > Chlamydotheca sp.>T. cophysa (except for Cu for which the ranking was Chlamydotheca sp.>T. cophysa > S. trispinosa). Overall, the test species are concluded to be suitable test organisms for tropical toxicity evaluations. Future studies should also evaluate the chronic toxicity and include other important metal exposure routes such as sediment and food.


Subject(s)
Metals, Heavy/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cadmium/toxicity , Copper/toxicity , Crustacea/drug effects , Manganese/toxicity , Mercury/toxicity , Odonata/drug effects
14.
Ecotoxicology ; 28(2): 133-142, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30547328

ABSTRACT

The toxicity of metals, whether isolated or in mixtures, involves changes in biochemical processes as well as in cell membranes, which may lead to deleterious short- and long-term effects on the affected organisms. Among metals, cadmium and mercury stand out due to their abundance in nature, frequent use for industrial activities and biological accumulation, with high levels of residence in trophic chains. Benthic communities are particularly prone to metal pollution since metals usually accumulate in sediments. The aim of this study was to evaluate the acute toxicity of mercury and cadmium, single and in mixture, to two native species of epibenthic oligochaetes: Allonais inaequalis and Dero furcatus. In order to assess the potential of these species as bioindicators, we compared their sensitivity with those of other internationally used species by applying the species sensitivity distribution approach. The 96h-LC50 of cadmium chloride was 627 and 364 µg L-1 for A. inaequalis and D. furcatus, respectively, evidencing that the latter species is almost twice as sensitive to this metal than A. inaequalis. For mercury chloride, the 96h-LC50 was 129 µg L-1 for A. inaequalis and 92 µg L-1 for D. furcatus. The sensitivities of these oligochaetes were superior or similar to that of other frequently used oligochaete test species such as Tubifex tubifex and Lumbriculus variegatus. The metal mixtures had synergism in general (D. furcatus) or at high doses only (A. inaequalis), implying a potentiation of their toxic effects when both metals co-occur in the environment. By comparing the derived toxicity values with concentrations of cadmium and mercury measured in the field, it can be concluded that aquatic organisms are likely to be at risk when exposed to the environmental relevant concentrations of cadmium and mercury here tested, especially when they are both present.


Subject(s)
Cadmium/toxicity , Mercury/toxicity , Oligochaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Fresh Water , Lethal Dose 50 , Portugal , Toxicity Tests
15.
Chemosphere ; 220: 937-942, 2019 Apr.
Article in English | MEDLINE | ID: mdl-33395815

ABSTRACT

The use of temperate toxicity data in tropical risk assessments has often been disputed. Previous sensitivity comparisons between temperate and tropical species, however, have not shown a consistent sensitivity difference between climatically-distinct species. Such comparisons were often limited by a small tropical toxicity dataset. In addition, differences in the taxonomic compositions of the temperate and tropical species assemblages used to construct species sensitivity distributions curves also hampered direct comparisons (e.g. type and ration of crustaceans and insects). The aim of the present study was to compare the sensitivity of temperate and tropical cladocerans to insecticides. Acute laboratory toxicity tests were conducted with five Neotropical cladocerans exposed to a concentration series of the insecticide chlorpyrifos. Subsequently, their EC50 values were compared with those reported in the literature for non-tropical cladocerans. An additional literature toxicity data search for insecticides other than chlorpyrifos was also conducted for both temperate and tropical cladocerans to enable a comparison for a wider range of insecticides and taxa. The order of sensitivity of the native cladocerans to chlorpyrifos was Ceriodaphnia silvestrii (0.039 µg L-1) > Diaphanosoma birgei (0.211 µg L-1) = Daphnia laevis (0.216 µg L-1) > Moina micrura (0.463 µg L-1) = Macrothrix flabelligera (0.619 µg L-1). A regulatory acceptable concentration based on temperate cladoceran toxicity data of both chlorpyrifos and other insecticides also appeared to be sufficiently protective for tropical cladoceran species. Implications for the use of temperate toxicity data in tropical risk assessments and indications for tropical cladoceran test species selection are discussed.

16.
Ecotoxicol Environ Saf ; 162: 663-672, 2018 Oct 30.
Article in English | MEDLINE | ID: mdl-30056931

ABSTRACT

Antimicrobials are commonly used in aquaculture to treat infectious diseases in fish. The overuse of these chemicals, however, has made them a contamination source for the aquatic environments. In this study, single and combined effects of florfenicol (FLO) and oxytetracycline (OTC), two antimicrobials widely used in the fish farming, were evaluated in acute and chronic toxicity tests using the tropical cladoceran Ceriodaphnia silvestrii as a model species. Also, a preliminary risk characterization of FLO and OTC for zooplankton was carried out, taking into account different exposure scenarios. The results obtained revealed that FLO and OTC have adverse effects on the mobility, reproduction and population growth rate of C. silvestrii in single exposures. In addition, mixture effects on the C. silvestrii were more severe than predicted effects based on the Concentration Addition model, showing a synergistic deviation for the mobility and a dose-level dependent deviation for the reproduction (synergism at higher levels than EC60). In relation to the risk characterization, risk quotients (RQs) exceeded 1 for chronic toxicity data obtained in both OTC and mixture exposures, indicating that the concentrations of these chemicals in Brazilian freshwater bodies could potentially present risks for the reproduction of zooplankton species in tropical regions. The RQs obtained for the mixtures were higher than those obtained for each chemical separately. Therefore, it is highly recommended that RQs are derived from single and mixture exposure data in order to obtain a more accurate risk characterization.


Subject(s)
Anti-Bacterial Agents/toxicity , Cladocera/drug effects , Oxytetracycline/toxicity , Thiamphenicol/analogs & derivatives , Water Pollutants, Chemical/toxicity , Zooplankton/drug effects , Animals , Cladocera/physiology , Female , Locomotion/drug effects , Male , Reproduction/drug effects , Thiamphenicol/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Zooplankton/physiology
17.
Ecotoxicology ; 27(7): 834-844, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29679314

ABSTRACT

As compared to their temperate counterparts, few toxicity tests have been conducted so far into the evaluation of the sensitivity of indigenous tropical species to pesticides. Especially mixture toxicity assessments appear to be scarce. To contribute to increase our knowledge in this arena, we evaluated the acute toxicity of diuron and carbofuran and their mixtures to the neotropical oligochaetes Allonais inaequalis and Dero furcatus, and the ostracod Strandesia trispinosa. Tests were performed with both the pure active ingredients, as well as their formulated products. The toxicity of the latter to the three test organisms was generally greater than that of the pure active ingredients, although absolute differences were rather small. The sensitivity of the indigenous species was slightly greater than temperate test species from the same taxonomic groups. The concentration addition conceptual model best described the results of the mixture toxicity data. Derived deviations of this model appeared to be dependent on the test organism and as to whether the pesticides were applied as active ingredients or their commercial products. Reported field concentrations of the two pesticides indicate risks to freshwater biota, especially if they are both present. The test species used in the present study are concluded to be suitable candidates as surrogate test organisms in local pesticide risk evaluations.


Subject(s)
Carbofuran/toxicity , Crustacea/drug effects , Diuron/toxicity , Oligochaeta/drug effects , Water Pollutants, Chemical/toxicity , Animals , Herbicides/toxicity , Insecticides/toxicity
18.
PLoS One ; 13(3): e0193472, 2018.
Article in English | MEDLINE | ID: mdl-29538395

ABSTRACT

We investigated feeding and reproductive performance of coexisting pelagic turbellarians from experiments on predation rates of Mesostoma ehrenbergii and M. craci as a function of food (Daphnia similis, three levels) and temperature (4 levels) during 10 days. Flatworms were collected from the pelagic of a subtropical lake in Brazil. Growth was more rapid at higher temperatures: more prey were consumed, and more eggs produced. M. craci and particularly M. ehrenbergii fitted a linear mixed-effects model and showed a type II functional response. M. craci was the more stenothermic of the two. Intrageneric predation also occurred: M. ehrenbergii fed on M. craci, but not vice versa. After a first clutch of subitaneous eggs, M. ehrenbergii produced resting eggs only. In M. craci an intermediate type of eggs hatched some time after release, survived passage through the gut of M. ehrenbergii, but did not resist drying. By primarily selecting cladoceran prey, M. ehrenbergii can make coexistence of both flatworms possible. As population density of M. ehrenbergii increases, it turns to producing resting and non-viable subitaneous eggs, thus limiting its population size. In nature, these processes structure the zooplankton community, while avoiding extinction of prey and predator.


Subject(s)
Platyhelminths/growth & development , Predatory Behavior/physiology , Animals , Food , Ovum/growth & development , Platyhelminths/physiology , Reproduction , Temperature
19.
Environ Sci Pollut Res Int ; 25(14): 13335-13346, 2018 May.
Article in English | MEDLINE | ID: mdl-28004367

ABSTRACT

In order to contribute to the increase of the body of knowledge on the sensitivity of tropical indigenous species to pesticides, acute and chronic toxicity tests were conducted with the neotropical cladoceran Ceriodaphnia silvestrii. Tests were carried out with the active ingredients diuron and carbofuran and one of their commercial formulations, the Diuron Nortox® 500 SC and the Furadan® 350 SC, respectively. For carbofuran, the active ingredient was more toxic than the commercial product, whereas for diuron, the commercial product appeared more toxic. In addition, hormetic effects on fertility were recorded for intermediate diuron concentrations. Acute and chronic toxicity data indicated that C. silvestrii was among the most sensitive invertebrate species for both test compounds. Based on concentrations measured in Brazilian water bodies, these compounds represent ecological risks for causing direct and indirect toxic effects on C. silvestrii and other aquatic organisms. Our results support previous claims on the advantages of using native species to better tune ecological risk assessment of chemicals in tropical ecosystems.


Subject(s)
Carbofuran/chemistry , Cladocera/drug effects , Diuron/chemistry , Pesticides/chemistry , Animals , Brazil , Cladocera/chemistry , Ecology , Ecosystem , Pesticides/pharmacology
20.
Ecotoxicol Environ Saf ; 142: 312-321, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28433596

ABSTRACT

In aquatic environments, organisms are often exposed to mixtures of several pesticides. In this study, the effects of carbofuran and diuron and their mixtures on the microalgae Raphidocelis subcapitata were investigated. For this purpose, toxicity tests were performed with the single compounds (active ingredients and commercial formulations) and their combinations (only active ingredients). According to the results, the toxicity of active ingredients and their commercial formulations to R. subcapitata was similar. In the single exposures, both carbofuran and diuron inhibited significantly the R. subcapitata growth and caused physiological (chlorophyll a content) and morphological (complexity and cell size) changes in cells, as captured by flow cytometry single-cell properties. Regarding the mixture toxicity tests, data fitted to both reference models, concentration addition (CA) and independent action (IA), and evidenced significant deviations. After the CA fitting, dose-ratio dependent deviation had the best fit to the data, demonstrating synergism caused mainly by diuron and antagonism caused mainly by carbofuran. After fitting the IA model, a synergistic deviation represented the best fit for the diuron and carbofuran mixtures. In general, the two reference models indicated the occurrence of synergism in the mixtures of these compounds, especially when diuron was the dominant chemical in the combinations. The increased toxicity caused by the mixture of these pesticides could pose a greater environmental risk for phytoplankton. Thus, exposure to diuron and carbofuran mixtures must also be considered in risk assessments, since the combination of these compounds may result in more severe effects on algae population growth than single exposures.


Subject(s)
Carbofuran/toxicity , Chlorophyta/drug effects , Diuron/toxicity , Microalgae/drug effects , Pesticides/toxicity , Water Pollutants, Chemical/toxicity , Carbofuran/analysis , Chlorophyll/metabolism , Chlorophyll A , Chlorophyta/metabolism , Diuron/analysis , Drug Synergism , Microalgae/metabolism , Pesticides/chemistry , Phytoplankton/drug effects , Toxicity Tests , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...